URW Geometric

Type Specimen

20 Styles Type Family

URW++ DESIGN & DEVELOPMENT GMBH

Poppenbütteler Bogen 36 22399 Hamburg | Germany

TEL +49 (0) 40 60605 0 FAX +49 (0) 40 60605 111

info@urwpp.de | www.urwpp.com

TYPEFACE	URW Geometric
DESIGNER / DATE	Jörn Oelsner, 2015
ABOUT	URW Geometric is a sans serif typeface inspired by the German geometric typefaces of the 1920s but designed for modern usability. The character shapes have optimized proportions and an improved balance, the x-height is increased, ascenders and descenders are decreased. Special glyphs, which are often designed afterwards for the original geometric typefaces from the 1920s, are perfectly integrated in the URW Geometric. These design characteristics increase the usa- bility and legibility tremendously. With its 10 weights ranging from Thin to Black, plus 10 additional oblique styles, it has a great versatility in mind. The extreme light styles shine bright in large sizes, the middle weights are perfect for body copy and the bolder variants for the use of emphasis information or bring a strong impact to headlines and information. The optically balanced styles are designed to work in perfect harmony together. URW Geometric is functional, strong, simple and harmonized in form, and at a glance appears as a modern variant of its predecessors. Apart from the basic characters the design has an extra focus on the special glyphs. These are designed for todays needs. For example: the email glyph looks modern and unique, including a perfectly balanced spacing. The numero sign, in modern use called "hashtag", is space saving and optically balanced for body text. Additionally, various extra and alternate glyphs are designed to provide a friendly usability. Including a wide Latin language support and character sets, URW Geo- metric is perfectly designed for today's requirements
STYLES	Thin Thin Oblique
	Extra Light Extra Light Oblique
	Light Light Oblique
	kegular kegular Oblique

Medium *Medium Oblique* Semi Bold *Semi Bold Oblique*

Extra Bold Extra Bold Oblique

Bold Bold Oblique

Heavy Heavy Oblique Black Black Oblique

0.1

CHARACTERS	609 per Style			
LANGUAGE SUPPORT	West, East, Turkish, Baltic, Romanian, Vietnamese			
INCLUDES LATIN	Afrikaans, Albanian, Asu, Basque, Bemba, Bena, Bosnian, Breton, Catalan, Chiga, Congo Swahili, Cornish, Croatian, Czech, Danish, Dutch, Embu, English, Esperanto, Estonian, Faroese, Filipino, Finnish, French, Galician, Ganda, German, Gusii, Hawaiian, Hungarian, Icelandic, Indonesian, Irish, Italian, Jola-Fonyi, Kabuverdianu, Kalaallisut, Kalenjin, Kamba, Kikuyu, Kinyarwanda, Latvian, Lithuanian, Luo, Luyia, Machame, Makhuwa-Meetto, Makonde, Malagasy, Malay, Maltese, Manx, Maori, Meru, Morisyen, North Ndebele, Norwegian Bokmål, Norwegian Nynorsk, Nyankole, Oromo, Polish, Portuguese, Romanian, Romansh, Rombo, Rundi, Rwa, Samburu, Sango, Sangu, Sena, Serbian (Latin), Shambala, Shona, Slovak, Slovenian, Soga, Somali, Spanish, Swahili, Swedish, Swiss German, Taita, Teso, Tongan, Uzbek (Latin), Vietnamese, Vunjo, Welsh, Zulu			
OPENTYPE FEATURES	Standard Ligatures, Stylistic Alternates, Case-Sensitive Forms, Ordinals, Tabular Lining Figures, Proportional Lining Figures, Superscripts, Subscripts, Numerators, Denominators, Slashed Fractions			

FONT STYLES	
URW GEOMETRIC THIN	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%"4/s©)*
URW GEOMETRIC EXTRA LIGHT 24PT	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%"4/s©)*
URW GEOMETRIC LIGHT 24PT	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%" ^A /s©)*
URW GEOMETRIC REGULAR 24PT	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%"4/s©)*
URW GEOMETRIC MEDIUM	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%"^⁄s©)*

FONT STYLES	
URW GEOMETRIC SEMI BOLD	HAMBURGERFONTS 947-03
24PT	@ (!?»§«) {&} [#.;"%″ [^] /s©)*
URW GEOMETRIC BOLD	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%"^⁄s©)*
URW GEOMETRIC EXTRA BOLD	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%″^/s©)*
URW GEOMETRIC HEAVY	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%″^/s©)*
URW GEOMETRIC BLACK	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%"^/s©)*

24PT

FONT STYLES		
URW GEOMETRIC THIN OBLIQUE	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%"^/s©)*	
URW GEOMETRIC EXTRA LIGHT OBL.	HAMBURGERFONTS 947-03 hamburgerfonts 947-03 $\bigcirc (1? \otimes \otimes) \{\&\} [\# : "\%" \land \otimes \otimes)^*$	
URW GEOMETRIC LIGHT OBLIQUE	HAMBURGERFONTS 947-03 hamburgerfonts 947-03	
24PT URW GEOMETRIC REGULAR OBL.	@ (!?»§«) {&} [#.; % * 4/s©)* HAMBURGERFONTS 947-03 hamburgerfonts 947-03	
24PT URW GEOMETRIC MEDIUM OBLIQUE	@ (!?»§«) {&} [#.;"%" ^A /s©)* HAMBURGERFONTS 947-03	
24PT	hamburgerfonts 947-03 @ (!?»§«) {&} [#.;"%"^/s©)*	

FONT STYLES	
URW GEOMETRIC SEMI BOLD OBL.	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%"^⁄s©)*
URW GEOMETRIC BOLD OBLIQUE	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%"^/s©)*
URW GEOMETRIC EXTRA BOLD OBL	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%″^/s©)*
URW GEOMETRIC HEAVY OBLIQUE	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03
24PT	@ (!?»§«) {&} [#.;"%"^/s©)*
URW GEOMETRIC BLACK OBLIQUE	HAMBURGERFONTS 947-03
	hamburgerfonts 947-03

@ (!?»§«) {&} [#.;"%"^s©)*

24PT

©2016

OPENTYPE FEATURE SUPPORT			
STANDARD LIGATURES	caffeine	•	caffeine
	sunflash	•	sunflash
	fishing	►	fishing
	bufflehead	►	bufflehead
	affinity	•	affinity
ORDINALS	2a8o		2°8°
TABULAR FIGURES	0123456789	►	0123456789
SUPERSCRIPTS	0123456789	►	H ⁰¹²³⁴⁵⁶⁷⁸⁹
SUBSCRIPTS	0123456789		H ₀₁₂₃₄₅₆₇₈₉
NUMERATOR	0123456789	►	H0123456789
DENOMINATOR	0123456789	•	H0123456789
TABULAR CURRENCY S.	\$ 61	►	\$61
	£7418	•	£7418
FRACTIONS	21/2 41/4 57/8	•	21/2 41/4 57/8
CASE SENSITIVE BRACKETS	(1963) [HH]	•	(1963) [HH]
ALTERNATES	GEOLOGIE	►	GEOLOGIE
	HAMBURG	•	HAMBURG
	flying typeface	•	flying typeface
	% Franken S.	•	% Franken S.

The character set of the URW Geometric support the unicode language charts Basic Latin, Latin-1 Supplement, Latin Extended A, Extended B and Extended Additional. In Total 609 characters. In the following section the glyphs are displayed in terms of their logical belonging.

UPPERCASE	
LATIN	ABCDEFGHIJKLMNOPQRSTUVWXYZ
Basic Latin	ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ
Latin Extended-A	ĀĂĄĆĈĊČĎĐĒĔĖĘĚĜĞĠĢĤĦĨĪĬĮİIJĴĶĹĻĽĿŁ
	ŃŅŇŊŌŎŐŒŔŖŘŚŜŞŠŢŤŦŨŪŮŮŰŲŴŶŸŹŻŽ
Latin Extended-B	
Latin Extended Additional	FWWWĄAAAAAAAAAAĄĘEEEEEEĘIĮ ỌỎỐÔÔÔÔÓƠỜƠỢŲỦỨỪỬỮỰϓϓϓ
LOWERCASE	
LATIN	abcdefghijklmnopqrstuvwxyz
Basic Latin	àáâãäåæçèéêëìíîïðñòóôõöøùúûüýÿþß
Latin Extended-A	āăąćĉċčďđēĕėęěĝğġģĥħĩīĭįıijĵķĸĺļľŀ
	łńnň'nnjōŏőœŕŗřśŝșšţťŧũūŭůűųŵŷźżżĺ
Latin Extended-B	ơư džijnja ið ugga é da skalf
Latin Extended Additional	
	όοοοοοόααααάήπημη ήλλλλ
ALTERNATES	
STYLISTIC ALTERNATES (.fea)	GМу
LIGATURES	
STANDARD LIGATURES (.fea)	fi fl ff ffi ffl

NUMBER SETS			
PROPORTIONAL FIGURES (def.)	0123456789		
TABULAR FIGURES (.fea)	0123456789		
	0123456789		0123456789
SUPERSCRIPT FIGURES (.fea)		NOMINATORS (.fea)	0120400707
SUBSCRIPT FIGURES (.fea)	0123456789	DENOMINATORS (.fea)	0123456789
FRACTIONS			
SLASHED FRACTIONS (.fea)	1/4 1/2 3/4 1/3 2/3 1/5 2/5 3/5 4/	5 1/6 5/6 1/8 3/8 5/8 7/8	
CURRENCY SYMBOLS			
PROPORTIONAL	\$¢££€¥Fr₱¤		
TABULAR CURRENCY S. (.fea)	£\$¢€¥		
PUNCTUATION			
	.:,; · //,""	• ?; !; <> « »	тп
DASHES/SLASHES/BRACKETS			
	// \	() [] {}	
CASE SENSITIVE BRACKETS (.fea)	()[]{}		
DIACRITICAL MARKS	// \ \ && VV UU 2		, , ,

	$+ - \times \div = \pm < > \leq \geq * \circ$
	% ‰ # ~ ≃ ≈ ≠ ∞ ~ ^ ¬
	◊Ω∂Δ∏Σ√∫∅μΘ
MISCELLANEOUS SIGNS	
COPYRIGHT SIGNS	© ® P TM
ALTERNATE COPYR. SIGNS (.fea)	©®
ORDINALS	αο
MORE MISC .SIGNS	@ ^A /s %
	& § †‡ ¶
ALTERNATE CARE OF SIGN (.fea)	%

MATHEMATICAL SIGNS

3.3

DETAILS			
OPTICAL BALANCED WEIGHTS	AAA AAAAA aaa aaaaaa OOOOOOOOO ooooooooo		
	HAMBURGER FONTS		
HARMONIZED LANGUAGE GLYPHS	Közđeség uddānnêlseshjælp støtte		
BROAD LANGUAGE SUPPORT	Luận thuyết đạo lí rất phổ biến		
MODERN EMAIL SIGN	typography@glyphs.net		
OPTIMIZED SPECIAL GLYPHS	^A /sNorwegian ^C /oAksjeselskap		
HARMONIZED HASHTAG	#Champion #FinalBarcelona		
VARIANTS	©2010 hispánico® Føroyingarl™		
USER FRIENDLY EXTRA GLYPHS	%Designer 180°Celsius		
HARMONIZED MATH. SIGNS	∆0769 √987 ≈420 Ø195		

20/23 PT	In Euclid's time, there we between physical and Since the 19th-century clidean geometry, the undergone a radical t	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Eu- clidean geometry, the concept of space has undergone a radical transformation and		
16/19 PT	In Euclid's time, there was n physical and geometrical sp discovery of non-Euclidean space has undergone a rac raised the question of which	o clear distinction between bace. Since the 19th-century geometry, the concept of dical transformation and h geometrical space best		
12/14.5 PT	In Euclid's time, there was no clear d metrical space. Since the 19th-centur etry, the concept of space has under raised the question of which geomet With the rise of formal mathematics 'point', 'line', or 'plane') lost its intuitive tinguish between physical space, geo	In Euclid's time, there was no clear distinction between physical and geo- metrical space. Since the 19th-century discovery of non-Euclidean geom- etry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to dis- tinguish between physical space, geometrical spaces (in which 'space',		
10/12 PT	In Euclid's time, there was no clear distinc- tion between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor- mation and raised the question of which geometrical space best fits physical space.	With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.		
08/10 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century,	'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more ab- stract than the familiar Euclidean space, which they		

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space',

12/14.5 PT

10/12 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space.

In Euclia's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.

'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they

58 PT

5.2

20/23 PT	In Euclid's time, there was no clear distinc- tion between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-	
16/19 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best In Euclid's time, there was no clear distinction between physical and geo- metrical space. Since the 19th-century discovery of non-Euclidean geom- etry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to dis- tinguish between physical space, geometrical spaces (in which 'space',	
12/14.5 PT		
10/12 PT	In Euclid's time, there was no clear distinc- tion between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor- mation and raised the question of which geometrical space best fits physical space.	With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.
08/10 PT	In Euclid's time, there was no clear distinction be- tween physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century,	'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish be- tween physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry con- siders manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space',

12/14.5 PT

10/12 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space.

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.

'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which

20/23 PT

58 PT

20/23 PT	In Euclid's time, there v tion between physical space. Since the 19th- non-Euclidean geome space has undergone	was no clear distinc- and geometrical century discovery of etry, the concept of a radical transfor-
16/19 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best	
12/14.5 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transforma- tion and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which	
10/12 PT	In Euclid's time, there was no clear distinc- tion between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor- mation and raised the question of which geometrical space best fits physical space.	With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.
08/10 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geo- metrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space'	(whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more ab- stract than the familiar Euclidean space, which they

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space.

the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.

With the rise of formal mathematics in

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they

20/23 PT

16/19 P

12/14 5 PT

10/12 PT

58 PT

20/23 PT	In Euclid's time, there tion between physical space. Since the 19th- non-Euclidean geome space has undergone	was no clear distinc- and geometrical century discovery of etry, the concept of a radical transfor-
16/19 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which	
12/14.5 PT		
10/12 PT	In Euclid's time, there was no clear distinc- tion between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor- mation and raised the question of which geometrical space best fits physical space.	With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.
08/10 PT	In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geo- metrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space'	(whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more ab- stract than the familiar Euclidean space, which they

58 PT

URW++ DESIGN & DEVELOPMENT GMBH

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

12/14.5 PT

10/12 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space.

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.

(whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they

16/19 P

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 12/14 5 PT In Euclid's time, there was no clear fits physical space. With the rise of formal mathematics in the 20th century, 'space' distinction between physical and geometrical space. Since the 19th-century (whether 'point', 'line', or 'plane') lost its discovery of non-Euclidean geometry, intuitive contents, so today one has to the concept of space has undergone a distinguish between physical space, georadical transformation and raised the metrical spaces (in which 'space', 'point' 10/12 PT question of which geometrical space best etc. still have their intuitive meanings) and In Euclid's time, there was no clear distinction (whether 'point', 'line', or 'plane') lost its intuitive between physical and geometrical space. Since the contents, so today one has to distinguish between 19th-century discovery of non-Euclidean geometry, physical space, geometrical spaces (in which 'space', the concept of space has undergone a radical 'point' etc. still have their intuitive meanings) and transformation and raised the question of which geoabstract spaces. Contemporary geometry considers metrical space best fits physical space. With the rise manifolds, spaces that are considerably more ab-08/10 PT of formal mathematics in the 20th century, 'space' stract than the familiar Euclidean space, which they

58 PT

5.9

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space.

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces.

URW++ DESIGN & DEVELOPMENT GMBH

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which they

20/23 PT

16/19 P

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

In Euclid's time, there was no clear fits physical distinction between physical and geometrical space. Since the 19th-century (whether 'p discovery of non-Euclidean geometry, intuitive co the concept of space has undergone a distinguish radical transformation and raised the metrical sp question of which geometrical space best etc. still ha

> In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space'

fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and

(whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean space, which

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

In Euclid's time, there was no clear fits physical space. With the rise of formal mathematics in the 20th century, 'space' distinction between physical and geometrical space. Since the 19th-century (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to discovery of non-Euclidean geometry, the concept of space has undergone a distinguish between physical space, georadical transformation and raised the metrical spaces (in which 'space', 'point' question of which geometrical space best etc. still have their intuitive meanings) and In Euclid's time, there was no clear distinction 'space' (whether 'point', 'line', or 'plane') lost its between physical and geometrical space. Since the intuitive contents, so today one has to distinguish 19th-century discovery of non-Euclidean geometry, between physical space, geometrical spaces (in the concept of space has undergone a radical

transformation and raised the question of which

geometrical space best fits physical space. With

the rise of formal mathematics in the 20th century,

between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean

20/23 DT

16/19 P

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

> In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century,

fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and

'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space',

In Euclid's time, there was no clear best fits physical space. With the rise of distinction between physical and geoformal mathematics in the 20th century, metrical space. Since the 19th-century 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has discovery of non-Euclidean geometry, the concept of space has undergone a to distinguish between physical space, radical transformation and raised the geometrical spaces (in which 'space', question of which geometrical space 'point' etc. still have their intuitive mean-In Euclid's time, there was no clear distinction 'space' (whether 'point', 'line', or 'plane') lost its between physical and geometrical space. Since the intuitive contents, so today one has to distinguish 19th-century discovery of non-Euclidean geometry, between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive the concept of space has undergone a radical transformation and raised the question of which meanings) and abstract spaces. Contemporary

geometrical space best fits physical space. With

the rise of formal mathematics in the 20th century,

08/10 PT

10/12 PT

geometry considers manifolds, spaces that are con-

siderably more abstract than the familiar Euclidean

58 PT

16/19 PT

12/14 5 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space',

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive mean-

'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean

20/23 PT

16/19 P

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in

In Euclid's time, there was no clear fits physical space. With the rise of formal distinction between physical and geomathematics in the 20th century, 'space' metrical space. Since the 19th-century (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to discovery of non-Euclidean geometry, the concept of space has undergone a distinguish between physical space, georadical transformation and raised the metrical spaces (in which 'space', 'point' 10/12 PT question of which geometrical space best etc. still have their intuitive meanings) In Euclid's time, there was no clear distinction 'space' (whether 'point', 'line', or 'plane') lost its between physical and geometrical space. Since the intuitive contents, so today one has to distinguish 19th-century discovery of non-Euclidean geometry, between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive the concept of space has undergone a radical transformation and raised the question of which meanings) and abstract spaces. Contemporary geometrical space best fits physical space. With geometry considers manifolds, spaces that are con-08/10 PT the rise of formal mathematics in the 20th century, siderably more abstract than the familiar Euclidean

20/23 PT

16/19 P

12/14 5 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings)

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean

00 (00 DT

16/19 P

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19thcentury discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings)

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean

20/23 PT

12/14 5 PT

10/12 PT

58 PT

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transfor-

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19thcentury discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings)

In Euclid's time, there was no clear distinction between physical and geometrical space. Since the 19th-century discovery of non-Euclidean geometry, the concept of space has undergone a radical transformation and raised the question of which geometrical space best fits physical space. With the rise of formal mathematics in the 20th century, 'space' (whether 'point', 'line', or 'plane') lost its intuitive contents, so today one has to distinguish between physical space, geometrical spaces (in which 'space', 'point' etc. still have their intuitive meanings) and abstract spaces. Contemporary geometry considers manifolds, spaces that are considerably more abstract than the familiar Euclidean

20/23 PT

16/19 P

12/14 5 PT

10/12 PT

58 PT

FONT STYLE COMPARISON

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

FONT STYLE COMPARISON

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).

COPENHAGEN

The introduction of coordinates by René Descartes and the concurrent developments of algebra marked a new stage for geometry, since geometric figures such as plane curves could now be represented analytically in the form of functions and equations.

beach clubs south Africa Quarna 97

MECHANISIERTE GRAFIK. SCHRIFT, TYPO, FOTO, FILM

Ce rassemblement unique au monde fait du Louvre un lieu de dialogue permanent entre le passé et le présent, un lieu d'apprentissage, de ravissement et de découverte pour les millions de visiteurs, venus de tous les horizons. Ancien palais des rois, le Louvre accompagne étroitement l'histoire de France et puise dans l'esprit de la Révolution d'être en "perpétuelle" "évolution", d'innover, de rayonner et de capter sans cesse le plus récent de la modernité pour rester, selon les termes d'Emile Zola, «à l'aise dans».

OSLO OPEN

Ancien palais des rois, le Louvre accompagne étroitement l'histoire de France et puise dans l'esprit de la Révolution d'être en "perpétuelle".

Dreieck + Quadrat

Type Specimen Version 1.2

URW GEOMETRIC

designed by Jörn Oelsner

URW++ Design & Development GmbH